
Bit

Binary zwei Zustände 0-1 (Zahlensystem mit der Basis 2, Dualzahlen)
aus-an | false-true; nenne weitere Beispiele

Digit Ziffer mit Ziffern gesteuert, digital; nicht analog
Bit Binary Digit jede Ziffer kann nur zwei Zustände haben: 0 oder 1

Byte 8 Bit
1 Byte hat immer 8 Bit = 8 Ziffern 0-1, 256 Codierungen möglich
kleinste Zahl: 00000000 = 0 (dezimal)
größte Zahl: 11111111 = 255 (dezimal)

Dezimal 10 Zustände 0-1-2-3-4-5-6-7-8-9 (Zahlensystem mit der Basis 10)
lateinisch decimus (zehnter)

Hexadezimal 16 Zustände 0-1-2-3-4-5-6-7-8-9-A-B-C-D-E-F (Zahlensystem mit der Basis 16)
zur besseren Lesbarkeit von Bytes werden je 4 Bit als Hex-Digit geschrieben

  Hex-Digit 0000=0 ... 1001=9 1010=A 1011=B 1100=C 1101=D 1110=E 1111=F

Binärzahlen zählen und addieren

0+0=0 0+1=1 1+0=1 1+1=10 (Übertrag)

Übertrag

0000
 + 0001

 

0100
 + 0001

 

1000
 + 0001

 

1100
 + 0001

 

0010
   + 0010

 

0011
   + 0011

 
 

Übertrag

= 0001
+ 0001

1 

= 0101
+ 0001

1 

= 1001
+ 0001

1 

= 1101
+ 0001

1 
+ 0011

 
+ 0110

 
 

Übertrag

= 0010
+ 0001

= 0110
+ 0001

= 1010
+ 0001

= 1110
+ 0001 + 0100

 
+ 0001

 
 

Übertrag

= 0011
+ 0001

11 

= 0111
+ 0001

111 

= 1011
+ 0001

111 

= 1111
+ 0001
1111 

+ 0000
 

+ 0010
 

 

 = 0100  = 1000  = 1100 = 10000      

Binär in Dezimal umrechnen (2 Byte / 16 Bit)

215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20  
2*2*2*2 2*2*2 2*2 2 1  

32768 16384 8192 4096 2048 1024 512 256 128 64 32 16 8 4 2 1  
 
  16

 
  100

 
  10000

Dezimal in Binär umrechnen (Division durch 2 mit Rest)

Rechne die Dezimal-Zahlen x=16, x=100 und x=10000 in Binärzahlen um mit folgendem Programm:

teile x durch 2 mit Rest
schreibe den Rest oben in die Tabelle von rechts 20 beginnend nach links (Array)
setze x auf das Ergebnis der Division x/2 (ohne Kommastellen)
wiederhole bis x=0

Rechne mit der Tabelle nach, ob das Ergebnis stimmt. Addiere dazu die Dezimalzahlen.

15.04.25, 19:06 Bit

calliope.schule/bit/ 1/4



Speicher können nur Bytes speichern, 1 Byte hat immer 8 Bit

Speicher: RAM, ROM, PROM, EPROM, EEPROM, Lochstreifen, Magnetband, Diskette, ..., Flash
auch Netzwerke übertragen nur Bytes ...  von einem Speicher in einen anderen Speicher

Im Speicher kann jedes Daten Byte über eine Adresse gefunden werden, Adressen sind auch (mehrere) Bytes.
Adresse 16 Bit Daten 8 Bit Maschinencode

  HEX HEX 27 26 25 24 23 22 21 20 8 Bit Prozessor U 880
RAM 2000 C3 1 1 0 0 0 0 1 1 JMP nn springe zur Adresse
  2001 EA 1 1 1 0 1 0 1 0 LOW Byte 27 .. 20 der Adresse
  2002 04 0 0 0 0 0 1 0 0 HIGH Byte 215 .. 28 der Adresse

EPROM 04EA                   Spielen der Anfangsmusik LC-80

Speicher-Chip Größen begannen bei 2KByte und wurden immer verdoppelt oder vervierfacht.
Bei Festplatten-Speichern gibt es wegen der Mechanik keine bestimmten Kapazitäten.
1 Kilobyte = 1024 Byte=210 (nicht 1000=103); 1 Megabyte = 220 Byte.
Wie viele Bytes sind 64 KByte? Und wie viele Bits sind das? 2 Antworten: _________

Prozessoren verarbeiten auch nur Bytes, allerdings mehrere gleichzeitig

Der erste Mikroprozessor konnte 8 Bit Daten parallel verarbeiten und 16 Bit Speicher (0000-FFFF)
adressieren. Er hatte also 8 "Drähte" für den Datenbus und 16 "Drähte" für den Adressbus.
Der Datenbus wurde dann immer verdoppelt auf 16 Bit, 32 Bit, 64 Bit. Dafür musste die doppelte Menge
Elektronik auf den Chip passen. Das war möglich weil z.B. Transistoren immer kleiner integriert werden
konnten. Auch die Taktfrequenz wurde erhöht, damit die Rechenoperationen schneller gehen.

Daten speichern in Bytes

Zahlen werden in 1 Byte, 2 Byte, 4 Byte oder 8 Byte gespeichert.
  ohne Vorzeichen mit Vorzeichen
  kleinster Wert größter Wert kleinster Wert größter Wert

8 Bit 0 255 -128 +127
16 Bit 0 65.535 -32.768 +32.767
32 Bit 0 4.294.967.295 -2.147.483.648 +2.147.483.647
64 Bit 0 18.446.744.073.709.551.615    
Festkommazahlen, Gleitkommazahlen werden auch in 8, 16, 32, 64 Bit gespeichert.
Datum und Zeit werden mit Software in diese Zahlen umgerechnet.

Text: jedes Zeichen wird in 1 Byte, 2 Byte, 3 Byte oder 4 Byte gespeichert

128 ASCII Zeichen belegen 7 Bit und werden in 1 Byte gespeichert. Bei ASCII Zeichen ist das Bit 27=0.
→ ASCII Tabelle (American Standard Code for Information Interchange)
Alle anderen Zeichen werden in 2, 3 oder 4 Byte gespeichert. Bei diesen Bytes ist das Bit 27=1.

Beispiele für UTF-8 Zeichen: ß € 😀

ß 00011 011111
2 Byte HEX DEZ

1100 0011 C 3 195
1001 1111 9 F 159

€ 0010 000010 101100
3 Byte HEX DEZ

1110 0010 E 2 226
1000 0010 8 2 130
1010 1100 A C 172

😀 000 011111 011000 000000
4 Byte HEX DEZ

1111 0000 F 0 240
1001 1111 9 F 159
1001 1000 9 8 152
1000 0000 8 0 128

logische Werte: false oder true können in 1 Bit gespeichert werden (boolean)

15.04.25, 19:06 Bit

calliope.schule/bit/ 2/4

http://calliope.schule/bit/ascii.aspx


Variablen in Programmiersprachen

Variablen Namen dürfen nur Buchstaben a-z, Ziffern 0-9 und den Unterstrich enthalten. Keine Leerzeichen!

Numerische Variablen bekommen immer einen bestimmten Daten-Typ, der eine feste Anzahl Bytes (im
Speicher) reserviert. Die größte Zahl, die in einer Variable gespeichert werden kann, wird durch die
reservierten Bytes (1,2,4,8) begrenzt (Tabelle oben). Wenn auch negative Zahlen gespeichert werden
sollen, wird das höchste Bit als Minus gewertet und der Zahlenbereich halbiert in negative und positive
Zahlen. Für Integer wird standardmäßig 32 Bit mit Vorzeichen verwendet. Es gibt auch Datentypen für
Kommazahlen, Datum und Zeit und viele andere. Nur unendlich ist nicht möglich, weil die Hardware
Grenzen setzt. Zum Anzeigen werden Zahlen in Text (toString) umgewandelt und dabei formatiert.

String bedeutet Zeichenkette, also Text. String Variablen speichern jeden Buchstabe und alle anderen
Zeichen als Zeichencode, also als 8 Bit, 16 Bit oder 32 Bit Zahl. Beim Lesen aus dem Speicher und beim
Speichern müssen diese Zeichencodes immer umgerechnet werden, weil der Speicher nur Bytes (je 8 Bit)
kennt. Um Text anzuzeigen muss das Display oder der Drucker die Zeichen als Pixel kennen oder das
Programm muss sie vorher in Images (Bilder) umwandeln. Kleine Computer (z.B. Calliope) sind begrenzt
auf 8-Bit-Zeichencodes. Text-Encoding ist so kompliziert, dass immer wieder Fehler auftreten.

Boolean Variablen sind logische Variablen, die nur zwei Werte true oder false (wahr oder falsch) speichern
können. Diese können bei der Programmierung direkt in Bedingungen verwendet werden.

Objekt Variablen können alles speichern, was ein Programmierer sich ausgedacht hat.

Arrays: Listen von Variablen gleichen Typs

Array Objekte speichern beliebig viele (0 .. n) Werte in einer Liste. Alle Elemente in einem Array müssen
den gleichen Datentyp haben: entweder nur Zahlen, oder nur Texte, oder nur logische true/false Werte. Es
gibt auch Arrays von Objekten und Arrays von Arrays... Eigentlich ist ein String schon ein Array von
einzelnen Zeichencodes. Es können aber auch viele Strings (unterschiedlicher Länge) in einem Array
gespeichert werden. In Arrays kann jedes Element über den Index gefunden werden: arrayVariable[index].

RGB Farbcode speichern in Bytes

RGB steht für die Farben rot, grün und blau. Jedes Farb-Display kann nur genau diese 3 Farben anzeigen.
Alle Farben werden durch unterschiedliche Helligkeiten der 3 Farben gemischt. Um die Helligkeit zu
speichern hat jede Farbe genau 1 Byte. Das ergibt 16777216 Farben pro Pixel.
Wie ist der Rechenweg?

Weil es keine 3-Byte Datentypen gibt, kommt für den Farbcode nur eine 32 Bit Zahl (4 Byte) in Betracht. Das
vierte Byte gibt an, wie durchsichtig oder deckend die Farbe des Pixels sein soll. Das ist aber nur sinnvoll,
wenn es einen Hintergrund gibt, der durch ein Vordergrund Bild hindurch scheinen soll.
In der Tabelle ist der Code für die maximale Helligkeit einer Farbe angegeben. Nur mit Hexadezimalzahlen
ist der RGB Code auch für Menschen verständlich. Schreibe in die zweite Tabelle die fehlenden Farben!

Transparenz rot grün blau
231 230 229 228 227 226 225 224 223 222 221 220 219 218 217 216 215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

FF0000
16711680

00FF00
65280

0000FF
255

000000 schwarz FF0000  
0000FF   FF00FF  
00FF00   FFFF00  
00FFFF   FFFFFF weiß

Drucker benutzen die Komplementärfarben CMY (cyan, magenta, yellow). Der Unterschied ist: Wenn alle 3
Farben CMY gedruckt werden, wird das Papier schwarz. Wenn alle 3 Farben RGB angezeigt werden, wird
das Display weiß. Es kommt also darauf an, ob es ohne Farbe hell oder dunkel war.

Wenn der Bildschirm 1920x1080 Pixel hat, wie viele Bytes müssen übertragen werden? Wie viele Pixel hat
die digitale Tafel? Und jetzt stell dir vor, wie schnell ein Bild sich ändern kann.

15.04.25, 19:06 Bit

calliope.schule/bit/ 3/4



Übung

1. Schreibe Deinen Name oder einen Text in die Tabelle in Spalte ASC.
2. Schreibe den Zeichencode als Hexadezimalzahl in Spalte HEX.
3. Schreibe die 8 Bit aus der Hexadezimalzahl in Spalte Byte.

HEX ASC
2 0
2 1 !
2 2 "
2 3 #
2 4 $
2 5 %
2 6 &
2 7 '
2 8 (
2 9 )
2 A *
2 B +
2 C ,
2 D -
2 E .
2 F /
3 0 0
3 1 1
3 2 2
3 3 3
3 4 4
3 5 5
3 6 6
3 7 7
3 8 8
3 9 9
3 A :
3 B ;
3 C <
3 D =
3 E >
3 F ?
HEX ASC

HEX ASC
4 0 @
4 1 A
4 2 B
4 3 C
4 4 D
4 5 E
4 6 F
4 7 G
4 8 H
4 9 I
4 A J
4 B K
4 C L
4 D M
4 E N
4 F O
5 0 P
5 1 Q
5 2 R
5 3 S
5 4 T
5 5 U
5 6 V
5 7 W
5 8 X
5 9 Y
5 A Z
5 B [
5 C \
5 D ]
5 E ^
5 F _
HEX ASC

HEX ASC
6 0 `
6 1 a
6 2 b
6 3 c
6 4 d
6 5 e
6 6 f
6 7 g
6 8 h
6 9 i
6 A j
6 B k
6 C l
6 D m
6 E n
6 F o
7 0 p
7 1 q
7 2 r
7 3 s
7 4 t
7 5 u
7 6 v
7 7 w
7 8 x
7 9 y
7 A z
7 B {
7 C |
7 D }
7 E ~
7 F DEL
HEX ASC

Byte HEX ASC
0101 1010 5 A Z
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       

Byte HEX ASC

Hilfe: eine HEX Ziffer in 4 Bit umrechnen

23 22 21 20    
8 4 2 1    
0 0 0 0 0
1 0 0 1 9
1 0 1 0 10 A
        11 B
1 1 0 0 12 C
        13 D
        14 E
1 1 1 1 15 F

15.04.25, 19:06 Bit

calliope.schule/bit/ 4/4


